Convergence Rates of α-Stable Difference Methods

E. Görlich and D. Pontzen*
Lehrstuhl A für Mathematik, RWTH Aachen, Templergraben 55, 5100 Aachen, West Germany
Communicated by P. L. Butzer
Received August 12, 1983

I. Introduction

The purpose of this note is to prove a quantitative Lax type theorem expressed in terms of α-stability and α-well-posedness. Here the term "quantitative" means that in the consistency hypothesis upon the difference method a rate of convergence is prescribed and that in the convergence result a rate is obtained corresponding to the degree of smoothness of the initial value. Theorems of this sort have been established in a general Banach space setting by Butzer, Dickmeis, Nessel, and others [2, 4, 5, 7]. For specific L_{p} spaces such theorems were proven by Peetre and Thomé $|10|$.

Our objective here is to work with α-well-posedness for $0 \leqslant \alpha<1$, instead of the usual (strong) well-posedness, that is, to admit initial value problems

$$
\begin{equation*}
\frac{d}{d t} u=A u \quad(t>0), \quad u(0)=f \in X \tag{1.1}
\end{equation*}
$$

on a Banach space X, with the closed linear operator A forming the infinitesimal generator of a semigroup $\{E(t) ; t>0\}$ of growth order α in the sense of Da Prato |6|. Essentially, the latter property requires that the operator norm of $E(t)$ satisfies

$$
\begin{equation*}
\|E(t)\| \leqslant M t^{-\alpha} e^{\omega t} \quad(t>0) \tag{1.2}
\end{equation*}
$$

For $\alpha>0$ this is a weaker property than strong well-posedness, to which it reduces for $\alpha=0$. Examples of initial value problems which are α-well-posed for some $\alpha>0$ but not 0 -well-posed are frequently met among systems of differential equations of the form (1.1) when the symbol of A is not a normal matrix (cf. [8]; there also is given a characterization of α - well-posedness analogous to the Kreiss theorem).

[^0]To α-well-posedness there corresponds the property of α-stability for a difference scheme $\left\{E_{k} ; 0<k \leqslant k_{0}\right\}$ of bounded linear operators on X. depending continuously on k. This requires the nth iterate of E_{k} to satisfy

$$
\begin{equation*}
\left\|E_{k}^{n}\right\| \leqslant C(n k)^{-\alpha} e^{K n k} \quad\left(0<k \leqslant k_{0}, n \in \mathbb{N}\right) \tag{1.3}
\end{equation*}
$$

for certain constants C, K. Again see $|8|$ for a characterization.
In Section 2 a quantitative Lax-type theorem on a general Banach space X will be given, and in Section 3 this will be made more precise by specializing X to the Lebesgue space L_{p}^{\prime}.

2. General Theorem

A difference scheme is said to be consistent with (1.1) of order $\varphi(k)$ on some linear subspace D of X if, for each $T>0$, there is a constant C_{0} such that, for each $g \in D$,

$$
\begin{equation*}
\left\|\left|E_{k}-E(k)\right| E(t) g\right\| \leqslant C_{0} k \varphi(k)\|g\|_{D} \quad\left(0<k \leqslant k_{0}, 0 \leqslant t \leqslant T\right) . \tag{2.1}
\end{equation*}
$$

Here $E(0)$ denotes the identity operator, $\|\cdot\|_{D}$ is some norm on D, and φ is an increasing function with $\varphi(x) \rightarrow 0$ as $x \rightarrow 0+$.

We further use the (Peetre) K-functional, which is defined by

$$
\begin{equation*}
K(t, f, X, D)=\inf _{k \in D}| | f f-g\left|+t\|g\|_{b}\right| . \tag{2.2}
\end{equation*}
$$

for $f \in X, t>0$.
Our first result is

Theorem 1. Let the initial value problem (1.1) be α-well-posed for some $\alpha \in \mid 0,1)$, and let $\left\{E_{k} ; 0<k \leqslant k_{0}\right\}$ be a difference scheme which is consistent with (1.1) of order $\varphi(k)$ on a subspace D of X. The following assertions are equivalent:
(a) the difference scheme is α-stable:
(b) for each $T>0$ there is a constant C_{1} such that

$$
\left\|E_{k}^{n} f-E(n k) f\right\| \leqslant C_{1}(n k)^{\circ} K(n k \varphi(k), f: X, D)
$$

for $0<k \leqslant k_{0}, n k \leqslant T$, and $f \in X$;
(c) for arbitrary $T>0$ there is a constant C_{2} such that

$$
\begin{aligned}
\left\|E_{k}^{n} f-E(n k) f\right\| & \leqslant C_{2}(n k)^{a}\|f\|, & & f \in X, \\
& \leqslant C_{2}(n k)^{1-n} \varphi(k)\|f\|_{n}, & & f \in D,
\end{aligned}
$$

for $0<k \leqslant k_{0}, n k \leqslant T$.

Proof. Assuming (a) to hold, let $g \in D$. Using (1.3), (2.1), it follows for $0<k \leqslant k_{0}, n \geqslant 2$, and $n k \leqslant T$ that

$$
\begin{aligned}
\left\|E_{k}^{n} g-E(n k) g\right\| & \leqslant \sum_{j=0}^{n-1}\left\|E_{k}^{n-j-1}\right\|\left\|\left[E_{k}-E(k)\right] E(j k) g\right\| \\
& \leqslant C_{0} k \varphi(k)\|g\|_{D}\left\{1+C k^{-\alpha} \sum_{j=0}^{n-2}(n-j-1)^{-\alpha}\right\} \\
& \leqslant C_{0} k \varphi(k)\|g\|_{D}\left\{1+C k^{-\alpha} \frac{n^{1-\alpha}}{1-\alpha}\right\} \\
& \leqslant C_{0}^{\prime}(n k)^{1-\alpha} \varphi(k)\|g\|_{D}
\end{aligned}
$$

for some constant C_{0}^{\prime} which is independent of n, k, and g. The case $n=1$ being trivial, property (6) follows by observing that

$$
\begin{aligned}
\left\|E_{k}^{n} f-E(n k) f\right\| \leqslant & \inf _{g \in D}\left\{\left\|\left(E_{k}^{n}-E(n k)\right)(f-g)\right\|+\left\|E_{k}^{n} g-E(n k) g\right\|\right\} \\
\leqslant & \inf _{g \in D}\left\{\left(C e^{K T}+M e^{\omega T}\right)(n k)^{-\alpha}\|f-g\|\right. \\
& \left.+C_{0}^{\prime}(n k)^{1-\alpha} \varphi(k)\|g\|_{D}\right\} \\
\leqslant & C_{1}(n k)^{-\alpha} K(n k \varphi(k), f ; X, D) .
\end{aligned}
$$

The implication (b) \Rightarrow (c) follows from the very definition (2.2). Let (c) be satisfied. Inserting (1.2) into $\left\|E_{k}^{n}-E(n k)\right\| \leqslant C_{2}(n k)^{-\alpha}$ we have

$$
\left\|E_{k}^{n}\right\| \leqslant\left(C_{2}+M e^{\omega T}\right)(n k)^{-\alpha} \quad\left(0<k \leqslant k_{0}, n k \leqslant T\right)
$$

which implies (1.3), that is, (a), and the proof is complete.
It may be noted that in (b) and (c) the estimate on D can be replaced by

$$
\left\|E_{k}^{n} f-E(n k) f\right\| \leqslant C_{1} k \varphi(k)\left\{1+(n k)^{-\alpha}(n-1)\right\}\|f\|_{D}
$$

which is more precise in case $n=1$ (cf. (2.1)).

3. Lebesgue Space Case

Let L_{p}^{N} denote the N fold Cartesian product of $L_{p}\left(\mathbb{R}^{d}\right), 1 \leqslant p \leqslant \infty$, with norm

$$
\begin{equation*}
\|f\|_{p}=\sum_{j=1}^{N}\left\|f_{j}\right\|_{p} \quad\left(f=\left(f_{1}, \ldots, f_{N}\right) \in L_{p}^{N}\right) \tag{3.1}
\end{equation*}
$$

where, for an $f_{j} \in L_{p}\left(1^{d}\right)$,

$$
\begin{aligned}
\left\|f_{j}\right\|_{p} & =\left(\int_{i d}\left|f_{j}(x)\right|^{p} d x\right)^{1 / p}, & & 1 \leqslant p<\infty \\
& =\underset{x \in d}{\operatorname{ess} \sup _{x \in}}\left|f_{j}(x)\right|, & & p=\infty
\end{aligned}
$$

By $W_{p, m}^{\lambda}$ we denote the N fold product of Sobolev spaces

$$
W_{p, m_{1}}^{2}=\vdots_{i}^{1} W_{p, m_{j}}\left({ }^{d}\right) .
$$

where $m=\left(m_{1} \ldots . m_{\wedge}\right)$ and $m_{j} \in=\{0,1,2 \ldots\}$ for each j, the norms being defined by

$$
\begin{equation*}
\left.|f|_{p, m}=\frac{\vdots}{j} \right\rvert\, f_{i} \|_{p, m}, \quad\left(f=\left(f_{1} \ldots . j_{3}\right) \in W_{p, m}^{\prime}\right) . \tag{3.2}
\end{equation*}
$$

with

$$
\left\|f_{j}\right\|_{r, m_{j}}=\underset{|r|=m_{i}}{\} \|\left. D^{r} f\right|_{\mathrm{i}, n} \quad\left(f_{i} \in W_{n, m_{i}}(\dot{\beta} \cdot d)\right)
$$

We further need the Besov spaces

$$
B_{p}^{s, \cdots}=\left.\right|_{j} ^{1} B_{p}^{\diamond, j}\left(j^{d}\right) \quad\left(s=\left(s_{1} \ldots, s_{i}\right), s_{j}>0\right)
$$

with norms

$$
\begin{array}{ll}
\|f\|_{B f}, \cdots & =\|f\|_{p}+\frac{\vdots}{j} \sup _{1} t \omega_{m i}\left(t, f_{j}\right)_{p} \tag{3.3}\\
\omega_{m_{i}}\left(r, f_{j}\right)_{p}=\sup _{0<\mid h i=1} \| \frac{\sum_{i}^{m}}{m_{i}}\binom{m_{j}}{l}(-1)^{m_{j}} f_{j}(\cdot+l h) & \left(h \in s_{j}<m_{j}\right)
\end{array}
$$

These are intermediate between L_{p}^{s} and $W_{n, m}^{s}$, that is.

$$
B_{p}^{s \cdot x, v}=\prod_{i=1}^{1}\left(L_{p}\left(\int^{d d}\right), W_{p, m_{i}}\left(i^{d}\right)\right)_{s_{j}, m_{i}, \cdot} \quad\left(0<s_{i}<m_{i}\right) .
$$

cf. |3, Sect. 4.3.1| for details.
The following special case of Theorem 1 can be considered as an extension to $\alpha>0$ of a result of Peetre-Thomée $|10|$, cf. also Brenner-Thomée-Wahlbin | $\mathbf{1}$; Sect. 3.3|.

Theorem 2. Let the initial value problem (1.1) be α-well-posed on L_{p}^{N} for some $\alpha \in[0,1)$, and let $\left\{E_{k} ; 0<k \leqslant k_{0}\right\}$ be a difference scheme which is α-stable on L_{p}^{N} and consistent with (1.1) of order $\varphi(k)$ on $W_{p, m}^{N}$, for some multi-index m.

Given $s=\left(s_{1}, \ldots, s_{N}\right)$ with $0<s_{j}<m_{j}$ and $T>0$, there is a constant C_{3} such that, for each $f \in B_{p}^{s, \infty, N}, 0<k \leqslant k_{0}, n k \leqslant T$, one has

$$
\left\|E_{k}^{n} f-E(n k) f\right\|_{p} \leqslant C_{3} \max _{1 \leqslant j \leqslant N}\left\{(n k)^{\left(s_{j} / m_{j}\right)-\alpha} \varphi(k)^{s_{j} / m_{j}}\right\}\|f\|_{B_{p}^{s, x, k}}
$$

Proof. By Theorem 1 we have for each $f \in L_{p}^{N}$,

$$
\left\|E_{k}^{n} f-E(n k) f\right\|_{p} \leqslant C_{1}(n k)^{-\alpha} K\left(n k \varphi(k), f ; L_{p}^{N}, W_{p, m}^{N}\right)
$$

In view of $[3 ;(4.3 .4)]$ (for $p=\infty$, see also [9]) and (3.1)-(3.3), there is a constant C_{m} which does not depend on t, such that

$$
\begin{aligned}
K\left(t, f ; L_{p}^{N}, W_{p, m}^{N}\right) & =\inf _{g_{j} \in W_{p, m_{j}(\mathbb{R}, d)}}\left|\sum_{j=1}^{N}\left\|f_{j}-g_{j}\right\|_{p}+t \sum_{j=1}^{N}\left\|g_{j}\right\|_{p, m_{j}}\right| \\
& =\sum_{j=1}^{N} K\left(t, f_{j} ; L_{p}\left(\mathbb{R}^{d}\right), W_{p, m_{j}}\left(\mathbb{R}^{d}\right)\right) \\
& \leqslant C_{m} \sum_{j=1}^{N}\left[\min (1, t)\left\|f_{j}\right\|_{p}+\omega_{m_{j}}\left(t^{1 / m_{j}}, f_{j}\right)_{p} \mid\right. \\
& \leqslant C_{m} \sum_{j=1}^{N}\left[\min (1, t)+t^{s_{j} / m_{j}} \mid\|f\|_{B p_{p} \cdot x, N}\right. \\
& \left.\leqslant N C_{m} \max _{1 \leqslant j \leqslant N} \mid \min (1, t)+t^{s_{j} / m_{j}}\right]\|f\|_{B s, \alpha, v} \\
& \leqslant 2 N C_{m} \max _{1 \leqslant j \leqslant N} t^{s_{j} / m_{j}}\|f\|_{B_{p}^{s, \alpha, v}} \quad(t>0) .
\end{aligned}
$$

Setting $t=n k \varphi(k)$ the assertion follows.
We finally note that Theorem 2 might also be written as an equivalence theorem if one adds the case $s_{j}=0$, where $\|f\|_{B \xi, \alpha, x}$ has to be replaced by $\|f\|_{p}$.

References

1. Ph. Brenner, V. Thomée, and L. B. Wahlbin, "Besov Spaces and Applications to Difference Methods for Initial Value Problems," Lecture Notes in Mathematics No. 434, Springer-Verlag, Berlin/New York, 1975.
2. P. L. Butzer, The Banach-Steinhaus theorem with rates, and applications to various branches of analysis, in "General Inequalities 2" (E. F. Beckenbach, ed.), pp. 299-331. Birkhäuser, Basel, 1980.
3. P. L. Butzer and H. Berens. "Semi-Groups of Operators and Approximation." Springer-Verlag. Berlin/New York, 1967.
4. P. L. Butzer. W. Dickmeis. H. Jansen, and R. J. Nessel. Alternative forms with orders of the Lax equivalence theorem in Banach spaces, Computing 17 (1977), 335-342.
5. P. L. Butzer and R. Whis. On the Lax equivalence theorem equipped with orders. I. Approx. Theory 19 (1977), 239-252.
6. G. Da Prato, Semigruppi di crescenza f. Ant. Scuola Nom. Sup. Pisa 20 (1966). 753-782.
7. W. Dickmels and R, J. Nessll. Classical approximation processes in connection with Lax equivalence theorems with orders, Acta Sci. Math. (Szeged) 40 (1978). 33-48.
8. E. GÖrlich And D. Pontzen. Alpha well-posedness. alpha stability, and the matrix. theorems of H. O. Kreiss, to appear.
9. H. Jounen. Inequalities connected with the moduli of smoothness. Mat. Fesnik 9 (1972), 289-303.
10. J. Pietra and V. Thomet: On the rate of convergence for discrete intial value problems. Math. Scand. 21 (1967), 159-176.

[^0]: * This author was supported by the Deutsche Forschungsgemeinschaft Grant Go 261/4.

