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1. INTRODUCTION

The purpose of this note is to prove a quantitative Lax type theorem
expressed in terms of a-stability and a-well-posedness. Here the term “quan-
titative” means that in the consistency hypothesis upon the difference method
a rate of convergence is prescribed and that in the convergence result a rate
is obtained corresponding to the degree of smoothness of the initial value.
Theorems of this sort have been established in a general Banach space
setting by Butzer, Dickmeis, Nessel, and others [2, 4, 5, 7]. For specific L,
spaces such theorems were proven by Peetre and Thomeée |10].

Our objective here is to work with a-well-posedness for 0 < a < 1, instead
of the usual (strong) well-posedness, that is, to admit initial value problems

%u:Au (t>0), u(0)=rec X, (1.1)

on a Banach space X, with the closed linear operator A forming the
infinitesimal generator of a semigroup {E(t); ¢ > O} of growth order a in the
sense of Da Prato [6|. Essentially, the latter property requires that the
operator norm of E(t) satisfies

IE@)| <Mt==e“"  (t>0). (1.2)

For a > O this is a weaker property than strong well-posedness, to which it
reduces for @ = 0. Examples of initial value problems which are a-well-posed
for some a > 0 but not O-well-posed are frequently met among systems of
differential equations of the form (1.1) when the symbol of 4 is not a normal
matrix (cf. [8]; there also is given a characterization of a — well-posedness
analogous to the Kreiss theorem).
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To a-well-posedness there corresponds the property of a-stability for a
difference scheme {E,:0 <k <k,} of bounded linear operators on AX.
depending continuously on k. This requires the nth iterate of E, to satisfy

IEZI < Clnk)y==e*™ (0 <k <hgon €N), (1.3)

for certain constants C, K. Again see |8] for a characterization.

In Section 2 a quantitative Lax-type theorem on a general Banach space X
will be given, and in Section 3 this will be made more precise by specializing
X to the Lebesgue space L.

2. GENERAL THEOREM

A difference scheme is said to be consistent with (1.1) of order ¢(k) on
some linear subspace D of X if, for each T > Q. there is a constant C, such
that, for each g€ D,

[1E.—EMR)E@ gl < Coke(k) [ gl (0 <k<k 01T (2.1)

Here E{0) denotes the identity operator, ||-],, is some norm on D, and ¢ is
an increasing function with ¢(x)—- 0 as x - 0+.
We further use the (Peetre) K-functional, which is defined by

K(t.rX. D)= inf {li f—gl +1 gt (2.2
for fEX, 1> 0.

Qur first result is

THEOREM 1. Let the initial value problem (1.1) be a-well-posed for some
a€|0,1), and let {E,:0<k<k,} be a difference scheme which Is
consistent with (1.1} of order w(k) on a subspace D of X. The following
assertions are equivalent:

(a) the difference scheme is a-stable:
(b) for each T > 0 there is a constant C, such that

EY f— E(nk) [ < C,(nk) * K(nkg(k). f: X. D)

Jor 0 <k <<ky,nk<T, and f€ X,
(¢) for arbitrary T > Q there is a constant C, such that

IEZ f— E(nk) ]| < Cynk) “ 11l FEX.
<Gynk)' “ok) | filp SED.

Jor 0 <k <ky,nk<T.
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Proof. Assuming (a) to hold, let g € D. Using (1.3), (2.1), it follows for
0<k<ky, n>2, and nk < T that

n—1

1Ex g — E(nk) gll < X IIEXIIHE, — E(K)] E(k) g

j=0
n—2
<Coko) glly |1+ €k X (n—j—1)"|
j=0

l—a?

n
< Cokol®) | glly |1+ Ck " —|

< Ci(nk)' = o(k) || gllp>

for some constant C; which is independent of #n, k, and g. The case n =1
being trivial, property (6) follows by observing that

1EZ S~ E(nk) fI| < inf {I|(E% — B(k)(f~ )|l + | Ek g — E(nk) g]]}
< inf {(Ce"™ + Me“T)(nk)~* || f—g|
+ Cylnk)' = (k) || gllp}
< C\(nk) ™ K(nko(k),f; X, D).

The implication (b) = (c) follows from the very definition (2.2). Let (c) be
satisfied. Inserting (1.2) into ||E} — E(nk)|| < C,(nk)~* we have

IERN < (Cy + Me“T)(nk) ™ (0 <k < ko, nk T,

which implies (1.3), that is, (a), and the proof is complete. 1
It may be noted that in (b) and (c) the estimate on D can be replaced by

IE% f—= E(nk) f1| < Crko(k){1 + (nk)~*(n = DS

which is more precise in case n =1 (cf. (2.1)).

3. LEBESGUE SPACE CASE

Let Lﬁ denote the N fold Cartesian product of LP(P"), 1 <p<« oo, with
norm

If1,= X Ifl,  (f=fimad¥) ELY), (3.1

j=1



294 GORLICH AND PONTZEN

where, for an f; € L (17),

Ip

= (] 1hrax) o 1ep<e.

= €SS sup U‘/,(x)\, p = 0.

xe ol

By W? we denote the N fold product of Sobolev spaces

p.m

A%
W= Wounll"):

pom
1

where m = (m,....m,) and m; € * " = {0. 1. 2....{ for each j. the norms being
defined by

\
IS = N L S = AV E W (3.2)
j 1

/ ;
with

“-/‘/HP.IN,: ,\_ \‘D,‘f‘i/v (/‘,"ELV/LW;(‘“([”'
[l m;

Here D" is the differential operator ¢'"/éx|' --- éxlpand |ri=r, + -+ +r1,.
We further need the Besov spaces

N
BN = I ] B iy (S = (8, e S300 8, > O
;oL

/

with norms
\
Hf”lf},~ N H/Hp + \_ ?ull:r) L u)m,([\f/)p (0 < S < )n/')~
r (3.3)
Meoom, . ‘
O (rSp = sup NI ) (hE ),
sy ' L

A
poms

These are intermediate between L,‘, and W that is.

A
By = W (W (D), (0 <s; <my).
i

cf. 3. Sect. 4.3.1] for details.

The following special case of Theorem 1 can be considered as an
extension to a >0 of a result of Peetre-Thomée |10}, cf. also Brenner—
Thomée—Wahlbin |1; Sect. 3.3].
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THEOREM 2. Let the initial value problem (1.1) be a-well-posed on L)
Jor some a € [0, 1), and let {E, ;0 < k < k,} be a difference scheme which is

a-stable on LY and consistent with (1.1) of order ¢(k) on WY ., for some
multi-index m.

Given s = (S,,..., Sy) with 0 <s;<m; and T >0, there is a constant C,
such that, for each f€ By®N, 0 < k< k,, nk < T, one has

1E S~ E(nk) f]l, < €5 max {nk) /2= o (kY H M| S g

Proof. By Theorem 1 we have for each f€ L},
|E% f—~ E(nk) fl, < Ci(nk) *K(nko(k), f; Ly, Wy )

In view of [3; (4.3.4)] (for p= oo, see also [9]) and (3.1)}-(3.3), there is a
constant C,, which does not depend on ¢, such that

N
K@ fiLy, Wyn)= _ inf }_Illf g,H,,+t\ llg,ll,,m
j:l

p.mj( X

L Kt fi3 Ly(RY), W, (RY)

ji=

; [min(L. 1) ], + @0 (1™, )

<C, 2 [min(1, £) + £/ ||f[|B%,J“\Y

i

< N i i s
<NC, lrgjang [min(1, £) + £5/™] Ilfll,;,p. A

<2NC,, max £ fllpges (> 0).

\\i

Setting ¢ = nkp(k) the assertion follows. [

We finally note that Theorem 2 might also be written as an equivalence
theorem if one adds the case s;= 0, where || f Jl,,s «.v has to be replaced by

1S,
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